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Abstract

In this paper, the dynamic behavior of a finite crack in the functionally graded materials subjected to the harmonic stress
waves is investigated by means of the Schmidt method. By use of the Fourier transform and defining the jumps of the
displacements across the crack surfaces as the unknown functions, two pairs of dual integral equations are derived. To solve
the dual integral equations, the jumps of the displacements across the crack surfaces are expanded in a series of Jacobi
polynomials. Numerical examples are provided to show the effects of the crack length, the circular frequency of incident wave
and the materials constants upon the stress intensity factor of the crack.
© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

A new class of engineered materials namely, functionally gradient materials (FGMs) have been developed pri-
marily for use in high temperature applications[1]. The composition in these FGMs, prepared using techniques like
power metallurgy, chemical vapor deposition, centrifugal casting, etc., is graded along the thickness. The spatial
variation of the material composition results in a medium with varying elastic and physical properties and calls for
investigation into the fracture of FGMs under different loading conditions. In particular, the use of the graded mate-
rial as interlayers in the bonded media is one of the highly effective and promising applications in eliminating various
shortcoming resulting from stepwise property mismatch inherent in piecewise homogeneous composite media[2–4].

From the fracture mechanics viewpoint, the presence of a graded interlayer would play an important role in
determining the crack driving forces and fracture resistance parameters. In an attempt to address the issues pertaining
to the fracture analysis of bonded media with such transitional interfacial properties, a series of solutions to certain
crack problems was obtained by Erdogan and co-workers[5–7]. Similar problems of delamination or an interface
crack between the functionally graded coating and the substrate were considered in[8–10]. The dynamic crack
problem for the non-homogeneous composite materials was considered in[11] but they considered the FGM layer
as multi-layered homogeneous media. Relatively fewer experimental and numerical investigations of the fracture
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Fig. 1. Geometry of a finite crack in the functionally graded materials.

behavior of FGMs have been conducted. Experimental investigations on the fracture of FGMs are limited due to the
high cost and elaborate facilities required for processing FGMs [12–14]. The finite element method has also been
used to simulate the fracture behavior of cracked FGMs [15,16]. The crack problem in FGM layers under thermal
stresses was studied by Erdogan and Wu [17]. They considered an unconstrained elastic layer under statically
self-equilibrating thermal or residual stresses. The interface crack problem for a non-homogeneous coating bonded
to a homogeneous substrate was investigated in [18]. Existing studies which consider the fracture behavior of
FGMs are mainly limited to quasi-static problems. In this case, inertia effects do not play a role and can be ignored.
However, it should be mentioned that most FGMs will be used in critical situations, where significant dynamic
loading may be involved. The dynamic fracture behavior of FGMs has received little attention from the scientific
community. Examples of dynamic analysis include the study of the steady-state dynamic crack propagation in an
interphase with spatially varying elastic properties under anti-plane loading conditions reported in [19], and the
steady-state dynamic fracture of FGMs under in-plane loading with the material properties being assumed to vary
along the direction of crack propagation reported in [20]. Experimental studies of the dynamic fracture of FGMs
with discrete property variation using photoelasticity technique were also conducted in [21]. The dynamic crack
propagation problems were studied in [22,23]. In spite of these efforts, the understanding of the dynamic fracture
process of FGMs is still limited.

In this paper, the dynamic behavior of a finite crack in the functionally graded materials subjected to the harmonic
stress waves is investigated by means of the Schmidt method. It is also assumed that the elastic properties of FGMs
spatially vary perpendicular to the plane of the crack. Young’s modulus and mass density of the model are assumed
to vary exponentially while Poisson’s ratio remains constant. The analytical study is based on the use of the Fourier
transform technique and a somewhat different approach, named as the Schmidt method [24,25]. To solve the
dual integral equations, the jumps of the displacements across crack surfaces are expanded in a series of Jacobi
polynomials. Numerical solutions are obtained for the stress intensity factors.

2. Formulation of the problem

It is assumed that there is a finite crack in the functionally graded materials as shown in Fig. 1. The lower half
plane of the functionally graded materials is denoted as material 1. The upper half plane of the functionally graded
materials is denoted as material 2. As discussed in [22], to make the analysis tractable, the elastic parameters µ(y),
and ρ(y) are approximated by

µ(y) = µ0 eβy, ρ(y) = ρ0 eβy, (1)

where β is a constant.
In this paper, the harmonic stress wave is vertically incident. Let ω be the circular frequency of the incident wave.

−σ0 is a magnitude of the incident wave. In what follows, the time dependence of all field quantities assumed to
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be of the form e−iωt will be suppressed but understood. σ(j)y (x, y, t), σ(j)x (x, y, t) and τ
(j)
xy (x, y, t) (The superscript

j = 1, 2 corresponds to the lower half plane and the upper half plane through in this paper.) represent the stress
components, respectively. As discussed in [26], the boundary conditions of the present problem can be written as
follows:

σ(1)y (x, 0, t) = σ(2)y (x, 0, t) = −σ0, τ(1)xy (x, 0, t) = τ(2)xy (x, 0, t) = 0, |x| ≤ l, (2)

σ(1)y (x, 0, t) = σ(2)y (x, 0, t), τ(1)xy (x, 0, t) = τ(2)xy (x, 0, t), |x| > l, (3)

u(1)(x, 0, t) = u(2)(x, 0, t), v(1)(x, 0, t) = v(2)(x, 0, t), |x| > l. (4)

By denoting u(j )(x, y, t) and v(j)(x, y, t) as the displacement components in the x- and y-directions, respectively, the
constitutive relations for the FGMs are written as

σ(j)x (x, y, t) = µ0 eβy

k − 1

[
(1 + k)

∂u(j)

∂x
+ (3 − k)

∂v(j)

∂y

]
(j = 1, 2), (5)

σ(j)y (x, y, t) = µ0 eβy

k − 1

[
(1 + k)

∂v(j)

∂y
+ (3 − k)

∂u(j)

∂x

]
(j = 1, 2), (6)

τ(j)xy (x, y, t) = µ0 eβy
[
∂u(j)

∂y
+ ∂v(j)

∂x

]
(j = 1, 2), (7)

where k = 3 − 4ν for the state of plane strain, k = (3 − ν)/(1 + ν) for the state of generalized plane stress. ν is
the Poisson’s ratio. The Poisson’s ratio ν is taken to be a constant; owing to the fact its variation within a practical
range has the rather insignificant influence on the value of the near-tip driving for fracture [5–7]. β �= 0 for the
functionally graded materials. When β = 0, it will return to the homogenous material case. In this paper, we just
consider the plane strain problem.

In the absence of body forces, the elastic behavior of the medium with the variable shear modulus and the variable
density in (1) is governed by following equations:

(1 + k)
∂2u(j)

∂x2
+ (k − 1)

∂2u(j)

∂y2
+ 2

∂2v(j)

∂x∂y
+ (k − 1)β

(
∂u(j)

∂y
+ ∂v(j)

∂x

)
= − (k − 1)ρ0ω

2

µ0
u(j), (8)

(1 + k)
∂2v(j)

∂y2
+ (k − 1)

∂2v(j)

∂x2
+ 2

∂2u(j)

∂x∂y
+ β

[
(1 + k)

∂v(j)

∂y
+ (3 − k)

∂u(j)

∂x

]
= − (k − 1)ρ0ω

2

µ0
v(j). (9)

3. Solution

Because of the symmetry, it suffices to consider the problem for x ≥ 0, |y| < ∞. The system of above gov-
erning equations is solved, using the Fourier integral transform technique to obtain the general expressions for the
displacement components as

u(1) = 2

π

∫ ∞

0

2∑
i=1

Ai(s) e−λi+2y sin(sx) ds, v(1) = 2

π

∫ ∞

0

2∑
i=1

mi+2(s)Ai(s) e−λi+2y cos(sx) ds, (10)

u(2) = 2

π

∫ ∞

0

2∑
i=1

Bi(s) e−λiy sin(sx) ds, v(2) = 2

π

∫ ∞

0

2∑
i=1

mi(s)Bi(s) e−λiy cos(sx) ds (11)
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and from (5)–(7), the stress components are obtained as

σ(1)y (x, y) = 2µ0 eβy

π(k − 1)

∫ ∞

0

2∑
i=1

[−(k + 1)mi+2(s)λi+2 + s(3 − k)]Ai(s) e−λi+2y cos(sx) ds,

τ(1)xy (x, y) = 2µ0 eβy

π

∫ ∞

0

2∑
i=1

[−λi+2 − mi+2(s)s]Ai(s) e−λi+2y sin(sx) ds, (12)

σ(2)y (x, y) = 2µ0 eβy

π(k − 1)

∫ ∞

0

2∑
i=1

[−(k + 1)mi(s)λi + s(3 − k)]Bi(s) e−λiy cos(sx) ds,

τ(2)xy (x, y) = 2µ0 eβy

π

∫ ∞

0

2∑
i=1

[−λi − mi(s)s]Bi(s) e−λiy sin(sx) ds, (13)

where s is the transform variable. A1, A2, B1 and B2 are arbitrary unknowns, λi(s) (i = 1, 2, 3, 4) are the roots of
the characteristic equation

λ4−2λ3β+(β2−2s2)λ2+ 2βs2λ+ s4 + 3 − k

k + 1
β2s2 + 2kρ0ω

2

(k + 1)µ0
(−s2 + λ2 − βλ) + k − 1

k + 1

(
ρ0ω

2

µ0

)2

= 0

(14)

and mi(s) (i = 1, 2, 3, 4) are expressed for each root λi(s) as

mi(s) = −(k + 1)s2 + (k − 1)λ2
i − β(k − 1)λi

−2sλi + sβ(k − 1)
(15)

Eq. (14) can be rewritten as the following form

(λ2 − λβ − s2)2 + 3 − k

k + 1
β2s2 + 2kc2(λ2 − βλ − s2)

k + 1
+ c4(k − 1)

k + 1
= 0, (16)

where c2 = ρ0ω
2/µ0.

The roots may be obtained as

λ1 =
β +

√
β2 − 4

(
(kc2/(k + 1)) − s2 −

√
c4/(k + 1)2 − s2β2(3 − k)/(k + 1)

)
2

, (17)

λ2 =
β +

√
β2 − 4

(
(kc2/(k + 1)) − s2 +

√
c4/(k + 1)2 − s2β2(3 − k)/(k + 1)

)
2

, (18)

λ3 =
β −

√
β2 − 4

(
(kc2/(k + 1)) − s2 −

√
c4/(k + 1)2 − s2β2(3 − k)/(k + 1)

)
2

, (19)

λ4 =
β −

√
β2 − 4

(
(kc2/(k + 1)) − s2 +

√
c4/(k + 1)2 − s2β2(3 − k)/(k + 1)

)
2

. (20)



Z.-G. Zhou et al. / Wave Motion 39 (2004) 213–225 217

From Eqs. (10)–(13), it can be seen that there are four unknown functions (in Fourier space they are functions of
s), i.e., A1, A2, B1 and B2 which can be obtained from the boundary conditions.To solve the present problem, the
jumps of the displacements across the crack surfaces can be defined as follows:

f1(x) = u(2)(x, 0) − u(1)(x, 0), (21)

f2(x) = v(2)(x, 0) − v(1)(x, 0), (22)

where f1(x) is an odd function and f2(x) an even function.
Applying the Fourier transforms and the boundary conditions (2)–(4), it can be obtained

[X1]

[
A1(s)

A2(s)

]
= [X2]

[
B1(s)

B2(s)

]
, (23)

[X3]

[
B1(s)

B2(s)

]
− [X4]

[
A1(s)

A2(s)

]
=
[
f̄1(s)

f̄2(s)

]
, (24)

where the matrices [Xi] (i = 1, 2, 3, 4) can be seen in Appendix A.
A superposed bar indicates the Fourier transform through the paper. If f(x) is an even function, the Fourier

transform is defined as follows:

f̄ (s) =
∫ ∞

0
f(x) cos(sx) dx, f(x) = 2

π

∫ ∞

0
f̄ (s) cos(sx) ds. (25)

If f(x) is an odd function, the Fourier transform is defined as follows:

f̄ (s) =
∫ ∞

0
f(x) sin(sx) dx, f(x) = 2

π

∫ ∞

0
f̄ (s) sin(sx) ds. (26)

By solving four Eqs. (23)–(24) with four unknown functions, substituting the solutions into Eq. (13) and applying
the boundary conditions, it can be obtained

σ(2)y (x, 0, t) = 2

π

∫ ∞

0
[d1(s)f̄1(s) + d2(s)f̄2(s)] cos(sx) ds = −σ0, 0 ≤ x ≤ l, (27)

τ(2)xy (x, 0, t) = 2

π

∫ ∞

0
[d3(s)f̄1(s) + d4(s)f̄2(s)] sin(sx) ds = 0, 0 ≤ x ≤ l, (28)

∫ ∞

0
f̄1(s) sin(sx) ds = 0, x > l, (29)

∫ ∞

0
f̄2(s) cos(sx) ds = 0, x > l, (30)

where d1(s), d2(s), d3(s) and d4(s) are known functions, and can be seen in Appendix A, respectively.
To determine the unknown functions f̄1(s) and f̄2(s), the above two pairs of dual integral equations (27)–(30)

must be solved.

4. Solution of the dual integral equations

From the nature of the displacement along the crack line, it can be obtained that the jumps of the displacements
across the crack surface are finite, differentiable and continuum functions. Hence, the jumps of the displacements
across the crack surface can be expanded by the following series:

f1(x) =
∞∑
n=0

anP
(1/2,1/2)
2n+1

(x
l

)(
1 − x2

l2

)1/2

for 0 ≤ x ≤ l, (31)
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f1(x) = 0 for x > l, (32)

f2(x) =
∞∑
n=0

bnP
(1/2,1/2)
2n

(x
l

)(
1 − x2

l2

)1/2

for 0 ≤ x ≤ l, (33)

f2(x) = 0 for x > l, (34)

where an and bn are unknown coefficients, P(1/2,1/2)
n (x) is a Jacobi polynomial [27]. (1 − (x2/l2))1/2 is the weight

function. The weight function can be determined by the singularities of the stress field at the crack tips and relations
between the stress fields and the displacement fields.

The Fourier transform of (31)–(34) is [28]

f̄1(s) =
∞∑
n=0

anG
(1)
n

1

s
J2n+2(sl), G(1)

n = √
π(−1)n

Γ(2n + 2 + (1/2))

(2n + 1)!
, (35)

f̄2(s) =
∞∑
n=0

bnG
(2)
n

1

s
J2n+1(sl), G(2)

n = √
π(−1)n

Γ(2n + 1 + (1/2))

(2n)!
, (36)

where Γ (x) and Jn(x) are the Gamma and Bessel functions, respectively.
Substituting (35) and (36) into Eqs. (27)–(30), it can be shown that Eqs. (29) and (30) are automatically satisfied.

After integration with respect to x in [0, x], Eqs. (27) and (28) reduce to

2

π

∞∑
n=0

∫ ∞

0

1

s2
[d1(s)anG

(1)
n J2n+2(sl) + d2(s)bnG

(2)
n J2n+1(sl)] sin(sx) ds = −σ0x, 0 ≤ x ≤ l, (37)

∞∑
n=0

∫ ∞

0

1

s2
[d3(s)anG

(1)
n J2n+2(sl) + d4(s)bnG

(2)
n J2n+1(sl)][cos(sx) − 1] ds = 0, 0 ≤ x ≤ l. (38)

From the relationships [27]

∫ ∞

0

1

s
Jn(sa) sin(bs) ds =




sin[n sin−1(b/a)]

n
a > b,

an sin(nπ/2)

n[b + √
b2 − a2]n

b > a,

(39)

∫ ∞

0

1

s
Jn(sa) cos(bs) ds =




cos[n sin−1(b/a)]

n
a > b,

an cos(nπ/2)

n[b + √
b2 − a2]n

b > a,

(40)

the semi-infinite integral in Eqs. (37) and (38) can be modified as:∫ ∞

0

d2(s)

s2
J2n+1(sl) sin(sx) ds= δ

2n + 1
sin
[
(2n + 1) sin−1

(x
l

)]
+
∫ ∞

0

1

s

[
d2(s)

s
− δ

]
J2n+1(sl) sin(sx) ds,

(41)

∫ ∞

0

d3(s)

s2
J2n+2(sl) cos(sx) ds= δ

2n + 2
cos

[
(2n + 2) sin−1

(x
l

)]
+
∫ ∞

0

1

s

[
d3(s)

s
−δ

]
J2n+2(sl) cos(sx) ds,

(42)
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where

lim
s→∞

d1(s)

s
= lim

s→∞
d4(s)

s
= 0, lim

s→∞
d2(s)

s
= lim

s→∞
d3(s)

s
= δ = − 2µ0

1 + k
. (43)

These constants can be obtained by using the Mathematica program and are independent of the gradient parameter
β. Also, these constants equal to the ones in the case of the homogeneous material. The multi-valued functions
λ1, λ2, λ3 and λ4, have branch points. We choose the branches such that Re(λ1) ≥ 0, Re(λ2) ≥ 0, Re(λ3) ≤ 0
and Re(λ4) ≤ 0 on the path of integration. The semi-infinite integral in (37), (38), (41) and (42) can be evaluated
directly. Eqs. (37) and (38) can now be solved for the coefficients an and bn by the Schmidt method [24,25]. For
briefly, (37) and (38) can be rewritten as

∞∑
n=0

anE
∗
n(x) +

∞∑
n=0

bnF
∗
n (x) = U0(x), 0 ≤ x ≤ l, (44)

∞∑
n=0

anG
∗
n(x) +

∞∑
n=0

bnH
∗
n (x) = 0, 0 ≤ x ≤ l, (45)

where E∗
n(x), F

∗
n (x), G

∗
n(x) and H∗

n (x) and U0(x) are known functions. an and bn are unknown coefficients.
From Eq. (45), it can be obtained

∞∑
n=0

bnH
∗
n (x) = −

∞∑
n=0

anG
∗
n(x). (46)

It can now be solved for the coefficients bn by the Schmidt method. Here the form −∑∞
n=0anG

∗
n(x) can be considered

as a known function temporarily. A set of functions Pn(x), which satisfy the orthogonality condition∫ l

0
Pm(x)Pn(x) dx = Nnδmn, Nn =

∫ l

0
P2
n(x) dx (47)

can be constructed from the function, H∗
n (x), such that

Pn(x) =
n∑
i=0

Min

Mnn
H∗
i (x), (48)

where Mij is the cofactor of the element dij of Dn, which is defined as

Dn =




d00, d01, d02, . . . , d0n

d10, d11, d12, . . . , d1n

d20, d21, d22, . . . , d2n

· · ·
· · ·
· · ·

dn0, dn1, dn2, . . . , dnn




, dij =
∫ l

0
H∗
i (x)H

∗
j (x) dx. (49)

Using (46)–(49), we obtain

bn =
∞∑
j=n

qj
Mnj

Mjj
with qj = −

∞∑
i=0

ai
1

Nj

∫ l

0
G∗
i (x)Pj(x) dx. (50)
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Hence, it can be rewritten as

bn =
∞∑
i=0

aiK
∗
in, K∗

in = −
∞∑
j=n

Mnj

NjMjj

∫ l

0
G∗
i (x)Pj(x) dx. (51)

Substituting (51) in Eq. (44), it can be obtained
∞∑
n=0

anY
∗
n (x) = U0(x), Y∗

n (x) = E∗
n(x) +

∞∑
i=0

K∗
niF

∗
i (x). (52)

Hence, it can now be solved for the coefficients an by the Schmidt method again as mentioned above. With the aid
of (51), the coefficients bn can be obtained.

5. Intensity factors

The coefficients an and bn are known, so that the entire stress field can be obtained. However, in fracture mechanics,
it is important to determine stresses σ(2)y and τ

(2)
xy in the vicinity of the crack tips. σ(2)y and τ

(2)
xy along the crack line

can be expressed as:

σ(2)y (x, 0, t) = 2

π

∞∑
n=0

∫ ∞

0

1

s
[d1(s)anG

(1)
n J2n+2(sl) + d2(s)bnG

(2)
n J2n+1(sl)] cos(sx) ds

= 2

π

∞∑
n=0

∫ ∞

0

{
d1(s)

s
anG

(1)
n J2n+2(sl) +

[(
d2(s)

s
− δ

)
+ δ

]
bnG

(2)
n J2n+1(sl)

}
cos(sx) ds, (53)

τ(2)xy (x, 0, t) = 2

π

∞∑
n=0

∫ ∞

0

1

s
[d3(s)anG

(1)
n J2n+2(sl) + d4(s)bnG

(2)
n J2n+1(sl)] sin(sx) ds

= 2

π

∞∑
n=0

∫ ∞

0

{[(
d3(s)

s
− δ

)
+ δ

]
anG

(1)
n J2n+2(sl) + d4(s)

s
bnG

(2)
n J2n+1(sl)

}
sin(sx) ds. (54)

An examination of (53) and (54) shows that, the singular part of the stress field can be obtained from the relationships
as follows [27]:

∫ ∞

0
Jn(sa) cos(bs) ds =




cos[n sin−1(b/a)]√
a2 − b2

a > b,

− an sin(nπ/2)√
b2 − a2[b + √

b2 − a2]n
b > a,

∫ ∞

0
Jn(sa) sin(bs) ds =




sin[n sin−1(b/a)]√
a2 − b2

a > b,

an cos(nπ/2)
√
b2 − a2

[
b + √

b2 − a2
]n b > a.

The singular part of the stress field can be expressed, respectively, as follows (l < x):

σ = −2δ

π

∞∑
n=0

bnG
(2)
n H(1)

n (x), (55)
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τ = 2δ

π

∞∑
n=0

anG
(1)
n H(2)

n (x), (56)

where

H(1)
n (x) = (−1)nl2n+1

√
x2 − l2

[
x + √

x2 − l2
]2n+1

, H(2)
n (x) = (−1)n+1l2n+2

√
x2 − l2

[
x + √

x2 − l2
]2n+2

.

We obtain the stress intensity factors KI and KII as follows:

KI = lim
x→l+

√
2(x − l)σ = − 2δ√

πl

∞∑
n=0

bn
Γ(2n + 1 + (1/2))

(2n)!
, (57)

KII = lim
x→l+

√
2(x − l)τ = − 2δ√

πl

∞∑
n=0

an
Γ(2n + 2 + (1/2))

(2n + 1)!
. (58)

6. Numerical calculations and discussion

To check the numerical accuracy of the Schmidt method, the results of this paper for cl = 0 with the corresponding
static results are given in Table 1. It can be seen that the results of this paper for cl = 0 are very close to Konda’s results
[31]. The stress intensity factors of this paper for βl = 0.01 (µ0 = 77×109 N/m2, ρ0 = 7800 kg/m3 and ν = 0.28)
are KI(l)/(σ0

√
l) = 1.00035 (cl = 0.005), KII(l)/(σ0

√
l) = 0.00250101 (cl = 0.005), KI(l)/(σ0

√
l) = 1.00075

(cl = 0.01), KII(l)/(σ0
√
l) = 0.00250282 (cl = 0.01), KI(l)/(σ0

√
l) = 1.0233 (cl = 0.105), KII(l)/(σ0

√
l) =

0.00260795 (cl = 0.105), KI(l)/(σ0
√
l) = 1.0461 (cl = 0.205), KII(l)/(σ0

√
l) = 0.00257766 (cl = 0.205). It can

be obtained that the results of this paper for ‘small’ βl approximate to van der Hijden and Neerhoff’s results [32].
Where K∗

I /(σ0
√
l) and K∗

II/(σ0
√
l) are Konda’s results [31]. KI/(σ0

√
l) and KII/(σ0

√
l) are this paper’s results.

Finally, the values of

2
[∑9

n=0anE
∗
n(x) +∑9

n=0bnF
∗
n (x)

]
πσ0

and U0(x)/σ0 are given in Table 2 for βl = 0.3, cl = 0.3. In Table 3, the values of the coefficients an and bn are
given for βl = 0.3 and cl = 0.3.

From [24,25,29,30] and the above discussion, it can be seen that the Schmidt method is performed satisfactorily
if the first 10 terms of infinite series to Eqs. (44) and (45) are retained. The behavior of the sum of the series keeps
steady with the increasing number of terms in (44) and (45). At −l ≤ x ≤ l, y = 0, it can be obtained that σ(2)y /σ0
is very close to negative unity. Hence, the solution of this paper can also be proved to satisfy the boundary condi-
tions (2). The material constants of the functionally graded materials are assumed as µ0 = 77.0 eβy (×109 N/m2),

Table 1
Verification of the model (cl = 0, µ0 = 77 × 109 N/m2, ρ0 = 7800 kg/m3 and ν = 0.28)

βl K∗
I (l)/(σ0

√
l) KI(l)/(σ0

√
l) K∗

II(l)/(σ0
√
l) KII(l)/(σ0

√
l)

0.1 1.0085 1.00855 0.0262 0.0250085
0.25 1.036 1.03657 0.065 0.0625919
0.5 1.101 1.10147 0.129 0.125660
1.0 1.258 1.26049 0.263 0.254639
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Table 2
Values of 2

[∑9
n=0anE

∗
n(x) +∑9

n=0bnF
∗
n (x)

]
/πσ0 and U0(x)/σ0 for βl = 0.3, cl = 0.3 (µ0 = 77 × 109 N/m2, ρ0 = 7800 kg/m3 and

ν = 0.28)

x 2
[∑9

n=0anE
∗
n(x) +∑9

n=0bnF
∗
n (x)

]
/πσ0 U0(x)/σ0

Real part Imaginary part

0.1 −0.10003 0.132925D−07 −0.1
0.2 −0.20017 0.130927D−07 −0.2
0.3 −0.30010 0.122412D−07 −0.3
0.4 −0.40005 0.963570D−08 −0.4
0.5 −0.50027 0.691544D−08 −0.5
0.6 −0.60025 0.416302D−08 −0.6
0.7 −0.70034 0.538018D−09 −0.7
0.8 −0.80056 0.384785D−08 −0.8
0.9 −0.90078 0.699468D−08 −0.9

Table 3
Values of an and bn for βl = 0.3, cl = 0.3 (µ0 = 77 × 109 N/m2, ρ0 = 7800 kg/m3 and ν = 0.28)

n 2an/πσ0 2bn/πσ0

Real part Imaginary part Real part Imaginary part

0 −0.780367D−03 −0.788443D−04 −0.146674D−01 −0.105707D−02
1 0.632474D−04 0.547235D−05 0.196768D−03 0.163178D−04
2 −0.434266D−05 −0.321604D−06 −0.770882D−04 −0.652842D−05
3 −0.147576D−05 −0.968702D−07 0.220698D−04 0.216505D−06
4 0.107723D−05 0.770777D−08 0.506925D−05 0.101778D−06
5 0.253876D−06 0.173066D−08 −0.481774D−06 −0.538656D−07
6 0.537253D−07 0.423652D−09 −0.740552D−07 −0.556831D−08
7 −0.245545D−07 −0.400122D−09 0.420578D−08 0.206401D−08
8 0.303421D−08 0.320341D−09 0.102324D−08 0.1213728D−08
9 0.454273D−09 0.103023D−09 −0.461321D−09 −0.433652D−09

ρ0 = 7800 kg/m3 and ν = 0.28, respectively. The dimensionless stress intensity factors K/σ0
√
l are calculated

numerically. The results of this paper are shown in Figs. 2–4. From the results, the following observations are very
significant:

(i) The aim of this paper is just to give an approach to solve the dynamic fracture problem in the functionally
graded materials subjected to the harmonic stress waves. In this paper, the unknown variables of dual integral
equations are the displacement jumps across the crack surfaces. From the results, it can be obtained the stress

Fig. 2. The stress intensity factor versus cl (c = ω
√
ρ0/µ0) for βl = 0.3, µ0 = 77 × 109 N/m2, ρ0 = 7800 kg/m3 and ν = 0.28.
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Fig. 3. The stress intensity factor versus βl for cl = 0.3 (c = ω
√
ρ0/µ0), µ0 = 77 × 109 N/m2, ρ0 = 7800 kg/m3 and ν = 0.28.

Fig. 4. The stress intensity factor versus ν for cl = 0.3 (c = ω
√
ρ0/µ0), βl = 0.3, µ0 = 77 × 109 N/m2 and ρ0 = 7800 kg/m3.

intensity factors are dependent on the crack length, the material parameters and the circular frequency of the
incident wave.

(ii) The normalization stress intensity factors KI/(σ0
√
l) and KII/(σ0

√
l) increase with the increase in the circular

frequency of the incident wave until reaching a peak at cl ≈ 0.4. Then they come to decrease until reaching a
minimum at cl ≈ 1.05 as shown in Fig. 2.

(iii) As shown in Fig. 3, the normalization stress intensity factor KI/(σ0
√
l) changes slowly with increasing of βl

for βl < 0.48. However, the normalization stress intensity factor KI/(σ0
√
l) increases quickly with increasing

of βl until reaching a peak at βl ≈ 0.6, then it comes to decrease for βl > 0.48. The normalization stress
intensity factorKII/(σ0

√
l) has the same behavior as the normalization stress intensity factorKI/(σ0

√
l) versus

βl.
(iv) As shown in Fig. 4, it can be obtained that the variation of the Poisson’s ratio ν within a practical range has

the rather insignificant influence on the normalization stress intensity factors KI/(σ0
√
l) and KII/(σ0

√
l). A

similar behavior has been obtained in [5–7].
(v) The normalization shear stress intensity factor KII/(σ0

√
l) is smaller than the normalization stress intensity

factor KI/(σ0
√
l).
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Appendix A

[X1] = µ0


 −(k + 1)m3(s)λ3 + s(3 − k)

k − 1

−(k + 1)m4(s)λ4 + s(3 − k)

k − 1
−λ3 − sm3(s) −λ4 − sm4(s)


 ,

[X2] = µ0


 −(k + 1)m1(s)λ1 + s(3 − k)

k − 1

−(k + 1)m2(s)λ2 + s(3 − k)

k − 1
−λ1 − sm1(s) −λ2 − sm2(s)


 ,

[X3] =
[

1 1

m1(s) m2(s)

]
, [X4] =

[
1 1

m3(s) m4(s)

]
,

[Y1] = [X3] − [X4][X1]−1[X2], [Y2] = [X2][Y1]−1 =
[
d1(s) d2(s)

d3(s) d4(s)

]
.
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